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Introduction

The field of neuro-oncology deals with primary as well as metastatic tumours of the central 
nervous system. Though the overall incidence of CNS tumours is low as compared to other 
organs; their overall mortality and morbidity is quite significant. The primary brain tumours 
account for approximately 2% of all cancer subtypes in the US with an incidence of approx. 
23/100000. Amongst all primary brain tumours, gliomas are the most common and account 
for about 80% of all malignant brain tumours. Amongst gliomas, glioblastomas are the 
most common and malignant primary brain tumour with the worst overall survival (1).

With the introduction of 5th edition of WHO classification of CNS tumours 2021, there has 
been a paradigm shift in diagnosis of CNS tumours based on molecular features combined 
with histopathological evaluation. Molecular markers were used in addition to histological 
findings for the first time in 2016. WHO CNS 5th edition builds up on the preceding 
classification system with addition of specific genetic markers, epigenetic markers e.g., 
alterations in DNA methylation etc. in addition to immunohistochemistry and histological 
findings. These changes have drastically changed the practice of neuro-oncology worldwide. 

The diagnosis and assessment of treatment response in brain tumour patients is routinely 
done by using muti-parametric Magnetic resonance imaging (MRI) which includes 
conventional sequences like T1/T2/FLAIR (Fluid attenuated inversion recovery) along 
with post gadolinium enhanced images. Advanced sequences like SWI (Susceptibility 
weighted imaging) /DWI (Diffusion weighted imaging), MR perfusion and MR 
spectroscopy are also used routinely for diagnosis and follow up. 

In addition to the qualitative and semi-quantitative data visible to the radiologists, the MR 
images also contain a massive amount of interpretable quantitative information which 
may not be visible to the naked eye; however, can be assessed by latest computational 
methods (2). This is an emerging field known as Radiomics which involves extraction of 
high throughput quantifiable data from available radiologic images. Machine learning 
methods are used to extract this data which further creates multiple mineable databases 
that can be used for diagnosis and further characterization of CNS tumours. In addition, 
this data can also be used to identify and predict genetic alterations. This combined study 
of data from radiology and genetics is known as radiogenomics. 

In simple terms, radiogenomics involves linking imaging data with genomic data. The 
radiogenomic method begins with acquiring genomic material from a fresh frozen paraffin 
embedded (FFPE) sample or a tissue microarray (TMA) obtained from biopsy specimen 
of the tumor. Bioinformatics tools, such as sequencing, are then used to discover single or 
numerous gene alterations. These mutations can be identified using a variety of methods, 
including immunohistochemistry (IHC) analysis and next-generation sequencing (NGS), 
such as mRNA sequencing (3). The ultimate objective of radiogenomic studies is to identify 
direct relationships between gene mutations, pathways, and distinguished imaging 
phenotypes. Additionally, these studies aim to identify particular target mutations for 
immunotherapy. For example, multiple radiomics studies have already explored magnetic 
resonance imaging (MRI) features of GBM, with a primary focus on predicting isocitrate 
dehydrogenase (IDH) and O6-methylguanine-DNA methyltransferase (MGMT) promoter 
methylation status, with accurate and promising results. (4) Further, studies have also 
established the usefulness of radiogenomic in predicting the tumor microenvironment, 
such as the immune cell infiltration in glioblastomas, which is a direct correlation of 
overall survival and is an excellent prognostic biomarker. (5) These findings reaffirm 
that genomics-based biomarkers can be correlated and/or predicted noninvasively by 
radiomics, allowing for the evaluation of intratumoral genetic heterogeneity; and, if 
prospectively validated, can be translated to the clinic as a non-invasive, cost-effective 
genomic test approach, advancing personalised patient care.

In this review article, we will focus on prediction and correlation of histology of common 
CNS tumours with advanced imaging techniques. 

Role of Advanced imaging techniques in neuro-oncology
Diffusion-weighted magnetic resonance imaging (DW-MRI) serves as a pivotal tool 
for characterizing tissues based on variations in proton movement freedom. Notably, 
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the apparent diffusion coefficient (ADC), derived from DW-MRI, has demonstrated a 
significant association with tumor cellularity or density. Recent advancements, such as 
high b-value DW-MRI (utilizing b-values >3000 s/mm²), surpass conventional methods 
in distinguishing tumor tissue from normal brain parenchyma. Techniques like diffusion 
kurtosis imaging (DKI), histogram curve-fitting, functional diffusion map (fDM), and 
restriction spectrum imaging (RSI) further refine DW-MRI data, offering enhanced 
imaging markers and improved tumor detection specificity by isolating tumor cell 
diffusion properties from extracellular processes like edema.

Perfusion-weighted magnetic resonance imaging (PW-MRI) techniques play a crucial 
role in assessing tissue blood flow, detecting pathological alterations in tissue vascularity 
characteristic of brain tumors. Dynamic susceptibility contrasts magnetic resonance imaging 
(DSC-MRI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) 
quantify paramagnetic contrast agent bolus and vascular permeability, respectively. While 
DSC-MRI is commonly used in clinical settings, DCE-MRI boasts superior signal-to-noise 
ratio and spatial resolution, albeit with longer acquisition times. Standardizing imaging 
acquisition parameters and postprocessing techniques remains pivotal for the clinical 
application of perfusion imaging. Arterial spin labelling is a relatively recent perfusion 
method that utilizes endogenously labelled blood water protons as an endogenous diffusible 
tracer and derives perfusion metrics without the use of any contrast agent.

Magnetic resonance spectroscopy (MRS) provides non-invasive insights into 
tissue metabolite concentrations. Single-voxel spectroscopy (SVS) and multivoxel 
spectroscopy (MVS) methods, while valuable in tumor diagnosis and assessment, 
exhibit operator dependency and reduced sensitivity for lesions <1.5 cm³. In contrast, 
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) has limited 
specificity in brain tumor imaging, but newer amino acid PET tracers offer improved 
lesion-to-background uptake ratios, making them valuable for tumor grading, 
recurrence detection, and treatment response assessment. Novel PET radiotracer (18)
F-fluoromisonidazole (18F-FMISO) aids in visualizing tissue hypoxia.

Radiomics and Radiogenomics

The automated quantitative information extraction from radiological images, known 
as radiomics, usually takes cues from imperceptible radiographical data. These cues 
are converted into mineable databases that can be used for a variety of tasks, including 
diagnosis, prognosis, classification, and assessing or forecasting the effectiveness of 
particular treatment (6-8).

Genetic mutations often play a role in determining the aggressiveness of tumors, 
influencing the growth pattern of lesions and their response to treatment. Radiomics 
extends its reach into the realm of genomics, with radiomic features demonstrating the 
capacity to identify genetic alterations within tumor DNA and RNA—a concept termed 
radiogenomics. As genetic mutations dictate tumor aggressiveness and influence response 
to therapy, the integration of radiomics and genomics presents a powerful approach to 
unravel the complexities of glioma phenotypes (9,10).

Figure 1: Radiomics workflow AQ1
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Imaging evaluation of specific brain tumors
Adult type diffuse gliomas
Adult type diffuse astrocytoma 
In 5th edition of WHO CNS tumours, astrocytoma’s are defined as tumours with IDH 
mutations without 1p/19q codeletion and can have varying grades from 2-4.  Most of 
these tumours also have associated mutations in ATRX and TP53 genes. Homozygous 
deletion of CDKN2A/B gene is sufficient to assign grade 4 to IDH mutant astrocytoma 
even without microvascular proliferation or necrosis. 

On imaging, IDH mutant gliomas are more often well-circumscribed as compared to 
IDH wildtype glioma or oligodendroglioma. These tumours also display less frequent 
enhancement as compared to IDH wildtype tumours. However, minimal enhancement 
may be seen in grade 3 and 4 tumours [Figure 2] (11).

Younger patients with low grade gliomas or secondary glioblastomas are more likely to 
have IDH1 mutations, which are generally linked to better outcomes and greater survival 
rates.  The problem of utilizing multimodal MR images to differentiate IDH mutant from 
IDH wildtype gliomas and connecting imaging features to the mutation has been the 
subject of numerous investigations. IDH mutations have been reliably identified with 
high accuracy by computational predictive models using multi-modal MRI in both large 
and small subject groups, with results ranging from 85% to 97% (12,13).

Earlier techniques focused on single or fewer modalities, such as T2-weighted MRI, FLAIR, 
or DTI, utilizing features like tumor volume, neoplasm location, T1-CE enhancement, 
non-enhancing tumor proportion, and FLAIR hyperintensity extent (14,15). These gross 
features were considered as potential indicators of IDH mutation (16-18). Additionally, 
the T2-FLAIR mismatch sign, which is suggestive of a 1p/19q non-codeleted astrocytoma 
with IDH mutation, has been studied. However, its intensity variations across scanning 
protocols led to decreased agreement among raters and lower sensitivity (with sensitivity 
at 10.9% and specificity at 100%) (19-21).

Advanced modalities like perfusion-weighted imaging and diffusion MRI have shown 
promise, with higher relative cerebral blood volume (rCBV) in IDH wildtype cases 
and lower apparent diffusion coefficient (ADC) values in IDH mutant cases (20,21). 
Nevertheless, these features may lack sensitivity to the observed variability between 
patients, making precise and robust biomarker assignment challenging. Rather than 
relying on a single feature, studies have delved into the extraction of features such as 
texture and intensity and pooling them into a multivariate framework using radiomics 
with predictive models. These efforts, especially using The Cancer Imaging Archive 
dataset (TCIA), have published predictive accuracies between 72-95%, emphasizing the 
distinctiveness of attributes deduced from contrast enhanced T1 weighted images and 
FLAIR for identifying IDH mutation (22,12).  

Apart from radiomics, deep neural networks, in particular convolutional neural networks 
(CNNs), have been extensively employed to delineate gliomas with IDH mutation. CNNs, 
such as ResNET architecture, have shown stability and robustness in discriminating IDH, 
achieving testing phase accuracies of 85.7%, improved to 89.1%. Data augmentation and 
transfer learning have been employed to prevent overfitting, contributing to improved 
generalizability of the classifier (23). 

Oligodendroglioma, IDH mutant and 1p/19q-codeleted
Both IDH mutation and presence of 1p/19q codeletion are required for the diagnosis 
of oligodendroglioma. These tumors may be graded as grade 2 or 3 but they cannot 
be grade 4. The characteristic imaging findings of oligodendrogliomas include 
poorly circumscribed margins; internal heterogeneity; presence of internal cysts and 
calcifications. Heterogeneity is 96% sensitive for oligodendroglioma, whereas calcification 
was 88% specific for oligodendroglioma [Figure 3] (11). Enhancement may be seen in 
approx. half of oligodendrogliomas which is usually partial. Ring enhancement and 
intense enhancement are not usually seen (11,24).  

A cortical high-flow sign has recently been identified as increased arterial spin labelling 
(ASL) signal intensity within tumor-affected cortex compared to normal-appearing cortex 
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in gliomas with IDH mutation and 1p19q codeletion (25). Tumour cells congregate in 
perivascular spaces or subpial regions of cortical grey matter, which could explain why 
IDH mutant codeleted gliomas have a higher frequency of the cortical high-flow sign 
than IDH wild type or IDH mutant noncodeleted gliomas. ASL was also demonstrated 
to surpass dynamic susceptibility contrast (DSC) in recognising the cortical high-flow 
sign in oligodendrogliomas in a separate study (25).

Radiomic Features for 1p/19q Prediction
Various radiomic features, including size and shape of tumor, texture, histogram and 
intensity, have been analysed for predicting 1p/19q status (26). Texture quantifiers 
demonstrate greater discriminative power compared to other attributes.  When 
compared to textural features, topological features—which quantify geometrical 

Figure 2: Axial T2 (a) and Postcontrast T1 (b) show a well-defined T2 hyperintense left parietal mass lesion showing 
internal necrotic components. Small patchy areas of enhancement are seen within rest of the lesion. SWI (c) shows 
blooming due to microhaemorrhage as confirmed on phase maps (d). Low ADC values are seen (e) with areas of 

elevated perfusion (f). Multivoxel MRS at 144 TE (g) shows elevated choline and lactate with markedly reduced NAA. 
Histopathologically found to be anaplastic astrocytoma IDH mutant WHO grade 3
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e

Figure 3: Axial T2 (a) and FLAIR (b) images show gyriform expansile hyperintense solid-cystic mass lesion 
involving left frontal lobe. DWI Trace (c) and ADC(d) maps show diffusion restriction. Perfusion is moderately 

elevated in the cortical location on rCBV map (e). There is moderate contrast enhancement seen (f). Extensive 
blooming is seen on SWI (g).  Multivoxel MRS (h) at 144 TE using PRESS technique shows elevated choline with 

reduced NAA peak. No lactate peak is seen. The tumour was histopathologically confirmed to be oligodendroglioma, 
NOS, WHO grade 3

d

h

c

g

b

f

a

e



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

 

Arora, et al.: 
Advanced Imaging Techniques 
in Neuro-oncology

   6

information or shape and cavities—show better predictive performance, improving 
accuracy by 5%.

Integration of Age into Radiogenomic Model
The accuracy of predicting 1p/19q status is significantly increased and improved by the 
use of age into radiogenomic models  (27).

Tumor Location’s Role in Discrimination
Tumor location plays a vital role in discriminating 1p/19q status (28).

Deep Learning Approach
In deep learning, a recent study utilizing a multi-scale CNN with 30-fold augmented data 
achieves an accuracy of 87.7% in predicting 1p/19q co-deletion (29).

Glioblastoma
Historically, glioblastomas were defined as diffuse astrocytic tumours which demonstrated 
evidence of necrosis, increased mitotic activity or microvascular proliferation. However, 
in 2021 classification; the term glioblastoma is reserved for only IDH wild type tumours. 
In addition, this term may also be applied to IDH wild type tumours with any of the 
following: TERT promoter mutation; EGFR amplification or combined gain of Chr 7 and 
loss of Chr 10.  IDH mutant astrocytoma with microvascular proliferation or necrosis are 
classified as astrocytoma, IDH mutant, CNS WHO grade 4 (30).

On imaging, these tumours demonstrate, T2/FLAIR hyperintensity with areas of 
restriction of diffusion and blooming on SWI with peripheral, thick and irregular post 
contrast enhancement. Evidence of raised perfusion is seen in these tumors (31) with 
raised Cho and reduced NAA with lipid-lactate peak [Figure 4].

MGMT Status Prediction
Methodologies and Accuracies: Radiomics applied to multi-modal MRI (T2, T1-CE, T1, 
FLAIR) for MGMT status prediction has shown varied accuracies (61-80%) across studies 
with cohorts ranging from 82 to 193 subjects (32).

Perfusion Imaging: Kickingereder et al. incorporated perfusion images, emphasizing 
higher Gaussian-normalized relative CBV (nrCBV) in contrast enhanced T1weighted 
images as crucial for MGMT identification (32).

Figure 4: Axial T2 (a) and T1 (b) images show a heterogenous solid cystic mass lesion epicentred in left insula 
showing intrinsic T1 shortening of the cystic component. There is extensive haemorrhagic residue seen on SWI 
(c). Focal area of low ADC is seen (d). Peripheral rim of elevated rCBV is noted (e). There is also peripheral rim 
enhancement seen (f). Multivoxel MRS (g) at 144 TE revealed a choline and lipid peak with reduced NAA. Note 

the decreased SNR compared to other MRS due to the extensive haemorrhagic products. Histopathologically was 
confirmed to be Glioblastoma IDH-wild type CNS WHO Grade 4
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Deep CNN for Genomic Types: Deep CNNs demonstrated high accuracy in predicting 
IDH genotype, status of 1p/19q codeletion, as well as methylation of MGMT promotor, 
revealing distinct imaging features for each genomic type (33,34).

Transcriptomic Delineation of Glioblastomas
Molecular Subtypes: Radiomics-based frameworks successfully delineate the four 
molecular subtypes namely-classical, proneural, neural and mesenchymal described by 
Verhaak et al. with accuracies ranging from 71% to 76% (35,36).

Paediatric type Diffuse high grade gliomas
This family of tumours includes four subsets of paediatric tumours:
A) Diffuse midline glioma, H3K27 – altered.
B) Diffuse hemispheric glioma, H3G34 – mutant
C) Diffuse paediatric type-high grade glioma, H3-wildtype and IDH -wildtype.
D) Infant-type hemispheric glioma.

Diffuse midline glioma, H3K27-altered
A uniform histopathological feature of these tumours is loss of H3K27me3 which portends 
a poor prognosis. These tumours are WHO grade 4 tumours. Typically these tumours 
have a poor overall survival with a median survival duration of approx. 9-11 months 
(37). The non-invasive prediction of H3K27M mutations stands as a pivotal frontier in the 
realm of neuro-oncology, offering significant implications for the prognostication of the 
disease and the exploration of potential targeted therapeutic interventions. These tumors 
may arise in pons/brainstem as well as in thalami, ganglio-capsular region, cerebellum, 
cerebellar peduncles, and the spinal cord. The imaging appearance of these tumours 
is variable. These tumors may exhibit thick enhancing margins or solid enhancement. 
On the other hand, they may also show more edema, poorly defined margins and more 
cortical invasion. In an independent study, it was demonstrated that peritumoral ADC 
values and normalised rCBV values were significant independent predictors of H3K27M 
mutational status in DMGs [Figure 5] (38). 

Multiparametric MRI-based radiomics models demonstrate varying performance 
across different sequences and machine learning techniques, a recent study, utilizing a 
combination of all sequences, demonstrated high accuracy (AUC = 0.969) in predicting 
H3 K27M mutant status in diffuse midline gliomas. The single best performing sequence 
in predicting the mutant status were T2 weighted images (39).

Diffuse hemispheric glioma- H3G34 mutant
This is a newly described tumour in the 2021 WHO classification and is always graded as 
grade 4.  It is usually seen in the supratentorial brain in older children and young adults. 
These lesions are hemispheric and may show extension across midline. Most of these tumours 

Figure 5: Histopathologically proven case of diffuse midline glioma, H3K27M mutant. Axial T2 weighted 
demonstrate an expansile heterogeneous signal intensity mass lesion located in the pons. The lesion shows 
multiple blooming foci on SWI images (b) and demonstrates patchy diffusion restriction as shown in diffusion 

and corresponding ADC images (c and d). The lesion shows elevated perfusion on r CBV maps (e) and shows 
heterogenous contrast enhancement (f). MR spectroscopy images reveal (g) elevated choline peak and reduced 

creatine and NAA peak

AQ5
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are well-defined and expansile with associated necrosis and/or microcalcification (40). Some 
tumors may show a well-defined mass with an adjacent infiltrative signal. All cases have 
leptomeningeal contact. Enhancement is variable ranging from none to intense [Figure 6]. 

Diffuse paediatric-type high grade glioma, H3-wildtype and IDH-wildtype
This is another new tumour entity which was described in the 5th edition of WHO 
classification. It is an aggressive paediatric tumour which lacks mutations in both IDH 
and histone 3 genes. On imaging, these tumours resemble adult glioblastomas with high 
grade features (41).

Infant -type hemispheric glioma
These tumours are aggressive tumours seen in infants. These tumours can show solid, 
cystic appearance with necrosis and hemorrhage with CSF dissemination. Hence spinal 
imaging should be done for these tumours. 

Paediatric type diffuse low grade gliomas
Four tumour entities are included in this group and are as follows:
A) Angiocentric glioma
B) Diffuse astrocytoma, MYB- or MYBL1- altered
C) Polymorphous low grade neuroepithelial tumor of the Young (PLNTY)
D) Diffuse low grade glioma, MAPK Pathway altered.

Angiocentric glioma
This is a rare tumour of children and young adults which is associated with epilepsy. These 
tend to occur in supratentorial superficial regions. These tumours were recognised as a 
distinct modality in 2007. On imaging, these tumours have two characteristic features – 
high intensity on T1WI which appears ribbon like and stalk like T2/FLAIR hyperintensity 
which extends to the ventricular surface (42). Surgical excision of the tumour usually 
results in disease free state [Figure 7]. 

Diffuse astrocytoma, MYB- or MYBL1- altered
This is a newly recognised tumour in the latest WHO classification. This is a highly 
differentiated tumour and results in seizures, which may be surgically treatable. On 
imaging, this may present as a well-circumscribed lesion with cysts, T1 hypointensity 
and T2 hyperintensity. No perilesional edema or post contrast enhancement seen (43).

Polymorphous low-grade neuroepithelial tumour of the young
This is a new tumour entity described in the 2021, WHO classification of the CNS tumours. 
This is a grade 1 neoplasm and is characterized by aberrant CD34 expression and has a 

Figure 6: Axial T2 and FLAIR images in a 9-year child reveal a large infiltrative heterogeneously hyperintense mass 
lesion occupying the right cerebral hemisphere (a and b), few blooming foci are seen in the lesion periphery (c). Axial 

diffusion images with corresponding ADC maps (d and e) demonstrate patchy diffusion restriction. The lesion does not 
show significant enhancement (f). Significant elevated perfusion is seen in the right basal ganglia on rCBV maps (g). 

Final histopathological diagnosis was diffuse hemispheric glioma, H3 G34-mutant, CNS WHO grade 4
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distinct DNA methylation signature. On imaging, these tumours are commonly seen in 
superficial location with temporal predilection. They are commonly well-circumscribed 
with peripheral cysts, central coarse calcification and show heterogeneous signal (44). 
These tumours can also show minimal post contrast enhancement [Figure 8]. 

Diffuse low grade glioma, MAPK Pathway-altered 
This is also one of the newly recognised tumours. They are rare tumours and can occur 
throughout the craniospinal axis. The imaging appearance is heterogeneous, and they 
may appear similar to pilocytic astrocytoma. 

Supratentorial ependymomas
Ependymomas can occur supratentorial as well as infratentorial compartments. The 
supratentorial tumours behave differently biologically as well as radiologically. Only a 

Figure 7: Axial T2 and FLAIR (a and b) images reveal an ill-defined T2 hyperintense and FLAIR inverting lesion 
noted involving right temporal lobe with accentuation of grey-white matter differentiation. The lesion demonstrated a 

T1 hyperintense cortical rim and did not show any obvious contrast enhancement (c and d). The lesion demonstrated 
facilitated diffusion (e and f) and no obvious blooming foci was seen within the lesion (g). FDG PET images (h) reveal 

hypometabolism in the lesion location. Histopathology was confirmed to be angiocentric glioma
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Figure 8: Axial T2 (a), T1 (b), FLAIR (c) shows a diffusely infiltrating mass lesion involving left temporal lobe 
with extension along perimesencephalic cisterns. There are hypointense areas seen within the lesion showing 

corresponding blooming on SWI (d) confirmed to calcifications on NCCT (h). Perfusion is not elevated on rCBV map 
(e). Areas of low ADC are seen (f). Heterogenous ill-defined contrast enhancement is seen (g). Histopathologically it 

was found to be Polymorphous Low Grade Neuroepithelical Tumour of the Young (PLNTY)
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small proportion of these tumours are intraventricular and most of these tumours are 
high grade. These tumours are further subdivided into:  ZFTA fusion positive and YAP1-
MAMLD1 fusion. The ZFTA fusion positive tumours are commoner of the two entities 
and are seen in older children. The common imaging features of these tumours include a 
large lesion with relatively well-defined margins which has a heterogeneous solid-cystic 
appearance. Presence of calcification and extension of the lesion to the ventricular surface 
from pial margin with ADC values approaching those of white matter (45,46) Machine 
learning-based diagnostic model has been investigated to distinguishing adult supratentorial 
extraventricular ependymoma (STEE) from high-grade gliomas (HGG). FLAIR-derived 
features have demonstrated high classification performance for all tumor groups, and texture-
based radiomic features from FLAIR were crucial in discriminating STEE from HGG (47).

Medulloblastoma
The four molecular subtypes of medulloblastoma (MB) defined in the 2021 WHO 
classification are: 
A) MB, WNT activated
B) MB, SHH-activated and TP53 wildtype
C) MB, SHH-activated and TP-53 mutant
D) MB, non-WNT/non-SHH.

Wingless (WNT) tumors are the rarest subtype; but they confer the best prognosis. On 
the other hand, group 3 tumours have the worst prognosis. On conventional imaging, 
SHH tumours are more homogenous than WNT tumours on T1WI. WNT tumours show 
more heterogenous post contrast enhancement than SHH tumours (48). WNT tumours 
are primarily located in CP angle location. Cerebellar peripheral location is primarily 
seen in SHH tumours [Figure 10]. Non WNT/non-SHH (erstwhile group 3 and group 4) 
show poor enhancement and spinal metastasis (48).

The radiogenomics exploration of pediatric medulloblastoma (MB) serves as a crucial 
avenue for improving risk stratification in this malignancy, offering valuable insights 
that can inform therapeutic decisions, facilitate family counselling, and guide the 
selection of patient cohorts suitable for targeted genetic analysis. In a retrospective 
study by Zhang et al (49) spanning 12 international pediatric sites from July 1997 to 

Figure 9: In a 23-year-old lady, there is a cyst with solid mural nodule seen in right supratentorial compartment with the 
solid component appearing T2 hyperintense (a), T1 hypointense (b) with avid enhancement (c), diffusion restriction on 
trace (d) and ADC maps (e). There is no blooming on SWI (f). The lesion was found to be ependymoma WHO grade 3 

with L1CAM positivity
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May 2020, the researchers engaged in a comprehensive analysis of MRI scans from 
newly diagnosed pediatric MB cases. Extracting 1800 features from T2- and contrast-
enhanced T1-weighted preoperative MRI scans, they devised a sophisticated two-stage 
sequential classifier. This classifier first discerns non-wingless (WNT) and non-sonic 
hedgehog (SHH) MB, followed by a differentiation between therapeutically relevant 
WNT and SHH subgroups. Additionally, a classifier was developed to distinguish high-
risk group 3 from group 4 MB. The study, encompassing 263 patients, demonstrated 
that the two-stage classifier outperformed a single-stage multiclass classifier. The 
combined, sequential classifier achieved impressive microaveraged F1 and binary F1 
scores, particularly for WNT. The classifier distinguishing group 3 from group 4 MB 
displayed a remarkable performance, further validating the efficacy of the machine 
learning approach. 

Embryonal tumours with multilayered rosettes (ETMR)
These are WHO grade 4, rare, small round blue cell tumours. They belong to one of the 
most aggressive tumours seen in children <4 years. These tumours are more common 
in girls, unlike the other CNS embryonal tumours. Amplification of C19MC region on 
chromosome 19 is identified as characteristic feature of these tumours. On imaging, these 
tumours are seen as large lesions with minimal or absent perilesional edema. They show 
minimal or weak enhancement with intratumoral macrovessels. Calcification may be 
commonly seen. These tumours show restricted diffusion with low ADC (50).

Pilocytic astrocytomas
Pilocytic astrocytomas (PA) belong to the circumscribed astrocytic gliomas and are 
seen in children and young adults. Majority of sporadic PA in children are seen 
in the cerebellum. When seen in patients with NF1, they commonly involve optic 
pathway or hypothalamus. In adults, they are commonly supratentorial  (51,52) On 
conventional imaging, PA may appear as a cystic lesion with enhancing mural nodule, 
completely solid or heterogenous with mixed solid-cystic appearance.  In pilocytic 
astrocytoma, a distinctive characteristic of the enhancing nodules is their tendency 
to exhibit facilitated diffusion while concurrently demonstrating low perfusion on 
imaging studies.

Conclusion

In conclusion, this review underscores the multifaceted role of advanced imaging 
techniques in neuro-oncology, emphasizing their diagnostic, predictive, and prognostic 
significance. As technology advances and our understanding of the molecular 
underpinnings of brain tumors deepens, the integration of advanced imaging with 
histological and genomic insights promises to usher in a new era of precision medicine 
in the management of these complex and challenging conditions.

Figure 10: Medulloblastoma- SHH variant Axial T2WI (a) show a hyperintense mass epicentred in the right cerebellar 
hemisphere showing few hyperintense foci within the tumoral core on T1WI (b). DWI show exuberant diffusion 

restriction (c) with minimal enhancement on post contrast T1WI (d)
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